Many animals can regenerate tissues after injury. While the initiation of regeneration has been studied extensively, how the damage response ends and normal gene expression returns is unclear. We found that in Drosophila wing imaginal discs, the pioneer transcription factor Zelda controls the exit from regeneration and return to normal gene expression. Optogenetic inactivation of Zelda during regeneration disrupted patterning, induced cell fate errors, and caused morphological defects yet had no effect on normal wing development. Using Cleavage Under Targets & Release Using Nuclease, we identified targets of Zelda important for the end of regeneration, including genes that control wing margin and vein specification, compartment identity, and cell adhesion. We also found that GAGA factor and Fork head similarly coordinate patterning after regeneration and that chromatin regions bound by Zelda increase in accessibility during regeneration. Thus, Zelda orchestrates the transition from regeneration to normal gene expression, highlighting a fundamental difference between developmental and regeneration patterning in the wing disc.
The pioneer transcription factor Zelda controls the exit from regeneration and restoration of patterning in Drosophila.
先锋转录因子 Zelda 控制果蝇的再生退出和模式恢复
阅读:9
作者:Bose Anish, Schuster Keaton, Kodali Chandril, Sonam Surabhi, Smith-Bolton Rachel K
| 期刊: | Science Advances | 影响因子: | 12.500 |
| 时间: | 2025 | 起止号: | 2025 Jun 6; 11(23):eads5743 |
| doi: | 10.1126/sciadv.ads5743 | 种属: | Drosophila |
| 研究方向: | 其它 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
