The adenosine monophosphate-activated protein kinase (AMPK) and its downstream effector Unc-51 like autophagy activating kinase 1 (ULK1) represent a key cellular signaling node, the alteration of which likely contribute to AD development. This study investigated the AMPK-ULK1 pathway activation state in AD and the impact of its modulation on mitochondria structure and function as well as on AD-related alterations. We show in human sporadic AD and 3xTgAD mice brains a defective activating phosphorylation of ULK1 despite the active phosphorylation of AMPK. In addition, we reported defective p-AMPK and p-ULK1 in cells expressing the amyloid precursor protein with the familial Swedish mutation. We then show that the antidiabetic metformin (Met) drug-mediated AMPK-ULK1 cascade activation alleviates structural and functional mitochondrial abnormalities in AD cells and mice brains. Furthermore, in the 3xTgAD brains, it reduces the early accumulation of APP C-terminal fragments (APP-CTFs) as well as amyloid beta (Aβ) burden, microgliosis and astrogliosis occurring at a later disease stage. AMPK-ULK1 activation increases the localization of APP-CTFs within cathepsin D-positive lysosomal compartments and the recruitment of Iba1(+) cells to Aβ plaques in vivo and enhances cathepsin D activity and phagocytic activity of microglia in vitro. Additionally, AMPK-ULK1 activation normalizes dendritic spine morphology in organotypic hippocampal slice cultures modeling AD and alleviates learning deficit in symptomatic 3xTgAD mice. Our study demonstrates potential therapeutic benefits of targeting AMPK-ULK1 cascade to reverse both early and late AD-related alterations, deserving further investigation in fundamental research and in human clinical studies.
Hampered AMPK-ULK1 cascade in Alzheimer's disease (AD) instigates mitochondria dysfunctions and AD-related alterations which are alleviated by metformin.
阿尔茨海默病 (AD) 中 AMPK-ULK1 级联受阻,引发线粒体功能障碍和 AD 相关改变,而二甲双胍可以缓解这些改变
阅读:7
作者:Mary Arnaud, Barale Samantha, Eysert Fanny, Valverde Audrey, Lacas-Gervais Sandra, Bauer Charlotte, Eddarkaoui Sabiha, Buée Luc, Buée-Scherrer Valérie, Checler Frédéric, Chami Mounia
| 期刊: | Alzheimers Research & Therapy | 影响因子: | 7.600 |
| 时间: | 2025 | 起止号: | 2025 Jun 2; 17(1):127 |
| doi: | 10.1186/s13195-025-01772-0 | 研究方向: | 信号转导 |
| 信号通路: | AMPK | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
