This study aimed to elucidate the complement protein C3-mediated host-pathogen interaction in the brain abscess caused by Staphylococcus aureus infection. Dual RNA-seq was employed to analyze the transcriptomic differences between C3 deficiency and wild-type mice of S. aureus-induced brain abscess model, and then we investigated the potential regulatory pathways of S. aureus-host interaction mediated by C3 and S. aureus genes associated with the pathogenesis of brain abscess. Finally, C3 deficient-mice and hla mutants of S. aureus were used to verify the specific pathogen-host interaction. In the S. aureus-induced brain abscess mouse model, the transcriptomic analysis revealed significant changes in bacterial virulence factors, such as hemolysin. Based on these data, we predicted a regulatory network formed by genes like hrcA and dnaK, which represent a possible regulation mechanism of S. aureus responding to the host. Furthermore, we identified that hla was the C3 response gene in S. aureus. From the host perspective, we observed that the absence of C3 significantly impacted the host's inflammatory response, primarily by altering the gene expression of several key immune and inflammatory pathways. These findings suggest that C3 deficiency may impair the host's ability to recognize and respond to external pathogens. To the best of our knowledge, this study proposed that S. aureus may affect host immune response through C3, and C3 plays a critical role in regulating inflammation and immune signaling pathways in the brain abscess caused by S. aureus infection.IMPORTANCEIn this work, we employed immunofluorescence and Western blot analysis to reveal a significant upregulation of microglia-derived C3 in the brain abscess mice model caused by S. aureus infection. By integrating the individual RNA sequencing data of S. aureus and the dual RNA-seq data of S. aureus infection brain abscess mice model, the potential regulatory pathways between S. aureus and host were identified, and host C3 not only affects the immune response but also mediates the regulation network of S. aureus. This study provided the potential novel targets for therapeutic strategies in mitigating the effects of S. aureus infections and improving treatment outcomes.
Dual RNA-seq reveals the complement protein C3-mediated host-pathogen interaction in the brain abscess caused by Staphylococcus aureus.
双重 RNA 测序揭示了金黄色葡萄球菌引起的脑脓肿中补体蛋白 C3 介导的宿主-病原体相互作用
阅读:7
作者:Jin Qiyuan, Zhai Yaxuan, Qiang Rui, Ma Xin, Zhao Chenhao, Zhong Jinqi, Li Jijie, Chen Qi, Han Mingxiao, Du Hong, Cong Qifei, Zhang Haifang
| 期刊: | mSystems | 影响因子: | 4.600 |
| 时间: | 2025 | 起止号: | 2025 Mar 18; 10(3):e0154024 |
| doi: | 10.1128/msystems.01540-24 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
