Autophagy plays a dual role in chromoplast transition and degradation and is essential for fruit coloration and ripening.

阅读:2
作者:Guo Ye, Bao Zhiru, Shi Meiyan, Zheng Qiwei, Huo Yawen, Hu Ran, Guan Yajie, Cao Saiyu, Hussey Patrick J, Deng Xiuxin, Cheng Yunjiang, Wang Pengwei
The color of tomato fruits is determined by carotenoids. The process involves removing chloroplast-related components and the biogenesis of chromoplast membranes where carotenoids are stored, but how these events are coordinated is unknown. Here, we demonstrated that part of this mechanism involves macroautophagy/autophagy playing dual roles in chromoplast transition and degradation. We have used fluorescence lifetime imaging microscopy (FLIM) to show that autophagosomes containing chloroplast-derived-vesicles increased significantly during early fruit ripening, which is an essential part of a pathway to the formation of chromoplasts. Interestingly, we also showed that autophagy controls the degradation of the chromoplasts containing carotenoids at the late ripening stage through a process we named chromophagy. This affects fruit color and ABA levels, which were higher in autophagy mutants with a slower turnover of chromoplasts. We concluded that autophagy is a determinant of both fruit coloration and ripening through degrading different plastid-related cargo.Abbreviation: ABA: abscisic acid; ATG: autophagy related; AP: autophagosome; BR: breaker stage; BR + 3: 3 days after breaker stage; BR + 7: 7 days after breaker stage; CV: coefficient of variation; FLIM: fluorescence lifetime imaging microscopy; IG: immature green; LR: light red; MG: mature green; PDVs: plastid-derived-vesicles; RhB: rhodamine B; RNAi: RNA interference; RR: ripe red; TEM: transmission electron microscopy; WLL: white-light laser.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。