Chronic β3 adrenergic agonist treatment improves neurovascular coupling responses, attenuates blood-brain barrier leakage and neuroinflammation, and enhances cognition in aged mice.

阅读:3
作者:Natarajan Duraipandy, Ekambaram Shoba, Tarantini Stefano, Nagaraja Raghavendra Y, Yabluchanskiy Andriy, Hedrick Andria F, Awasthi Vibhudutta, Subramanian Madhan, Csiszar Anna, Balasubramanian Priya
Microvascular endothelial dysfunction, characterized by impaired neurovascular coupling, reduced glucose uptake, blood-brain barrier disruption, and microvascular rarefaction, plays a critical role in the pathogenesis of age-related vascular cognitive impairment (VCI). Emerging evidence points to non-cell autonomous mechanisms mediated by adverse circulating milieu (an increased ratio of pro-geronic to anti-geronic circulating factors) in the pathogenesis of endothelial dysfunction leading to impaired cerebral blood flow and cognitive decline in the aging population. In particular, age-related adipose dysfunction contributes, at least in part, to an unfavorable systemic milieu characterized by chronic hyperglycemia, hyperinsulinemia, dyslipidemia, and altered adipokine profile, which together contribute to microvascular endothelial dysfunction. Hence, in the present study, we aimed to test whether thermogenic stimulation, an intervention known to improve adipose and systemic metabolism by increasing cellular energy expenditure, could mitigate brain endothelial dysfunction and improve cognition in the aging population. Eighteen-month-old C57BL/6J mice were treated with saline or β3-adrenergic agonist (CL 316, 243, CL) for 6 weeks followed by functional analysis to assess endothelial function and cognition. CL treatment improved neurovascular coupling responses and rescued brain glucose uptake in aged animals. In addition, CL treatment also attenuated blood-brain barrier leakage and associated neuroinflammation in the cortex and increased microvascular density in the hippocampus of aged mice. More importantly, these beneficial changes in microvascular function translated to improved cognitive performance in aged mice. Our results suggest that β3-adrenergic agonist treatment improves multiple aspects of cerebromicrovascular function and can be potentially repurposed for treating age-associated cognitive decline.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。