Non-canonical ALK7 pathways promote pancreatic cancer metastasis through β-catenin/MMP-mediated basement membrane breakdown and intravasation.

非经典ALK7通路通过β-catenin/MMP介导的基底膜破坏和血管内渗促进胰腺癌转移

阅读:9
作者:Kolarzyk Anna M, Kwon Yujin, Oh Elizabeth, Lee Keng-Jung, Cho Su-Yeon, Cano Issahy, Lu Renhao, Kwak Tae Joon, Lee Jaehyun, Wong Gigi, Kim Andrew H, Gandarilla Omar, Hidalgo Manuel, Kim Won Kyu, Lee Esak
Breaching the vascular barrier is a critical step in pancreatic ductal adenocarcinoma (PDAC) metastasis, yet the mechanisms enabling this process remain incompletely understood. Transforming growth factor beta (TGFβ) receptors have been extensively studied in many cancer types. However, activin receptor-like kinase 7 (ALK7), one of the TGFβ receptors, is under-investigated, and its roles in PDAC metastasis have been unclear. This study identifies two distinct but interconnected ALK7-driven non-canonical pathways that promote PDAC dissemination. The ALK7-β-catenin-EMT axis enhances intrinsic tumor cell motility, driving epithelial-mesenchymal transition (EMT). In parallel, the ALK7-β-catenin-MMP axis facilitates metastatic invasion by upregulating MMP production, leading to ECM degradation and invadosome formation, which promote vascular barrier breakdown and intravasation. An orthotopic PDAC metastasis model reveals that both pharmacological and genetic ALK7 inhibition suppresses metastasis. 3D microfluidic vessel-on-chip platforms further demonstrate that ALK7 inhibition preserves basement membrane (BM) integrity, limiting intravasation. While MMP inhibition effectively blocks BM breakdown and intravasation, extravasation remains unaffected, highlighting distinct molecular requirements for different metastatic stages. These findings establish ALK7 as a dual-function pro-metastatic regulator that orchestrates both tumor cell plasticity and ECM remodeling, positioning ALK7 inhibition as a promising strategy to target early metastatic dissemination in PDAC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。