Titin is a new factor regulating arterial stiffness through vascular smooth muscle cell tone in male rats.

阅读:3
作者:Zhu Chaoqun, Bishop Terrance, Gregorich Zachery R, Guo Wei
Arterial stiffness is a robust predictor of cardiovascular disease and mortality. As such, there is substantial interest in uncovering its causal factors for the development of targeted treatments to regulate arterial stiffness. The elastic protein titin is a key determinant of myocardial stiffness, yet whether it plays a role in regulating arterial stiffness is unknown. In this study, we aimed to investigate the role of titin in vascular smooth muscle cell (VSMC) and overall arterial stiffness. To do this, we took advantage of rats lacking RNA binding motif 20 (RBM20), the primary splicing regulator of titin, in striated muscles. Using this model, we demonstrate that RBM20 regulates titin isoform expression in smooth muscle, with loss of the protein leading to the expression of larger titin isoforms. We show that the expression of larger titin reduces the stiffness of VSMCs. While decreased titin-based VSMC stiffness did not affect baseline arterial stiffness, we found that arterial stiffness was reduced in response to a challenge with the potent vasoconstrictor angiotensin II (Ang II). The observed reduction in arterial stiffness following Ang II treatment was not the result of changes in either the extracellular matrix or myofilaments. We further show that the expression of a larger titin isoform ameliorates cardiac remodeling caused by Ang II-associated hypertension. In summary, our study provides the first evidence that titin regulates VSMC stiffness, which is relevant for arterial stiffness in the context of elevated blood pressure. Furthermore, our data provide proof-of-concept evidence that targeting RBM20 to reduce arterial stiffness through titin isoform switching may benefit aging- or hypertension-associated arterial stiffness and vascular diseases.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。