Understanding the level of genome organization that governs gene regulation remains a challenge despite advancements in chromatin profiling techniques. Cell type specific chromatin architectures may be obscured by averaging heterogeneous cell populations. Here we took a reductionist perspective, starting with the relocation of the hunchback gene to the nuclear lamina in Drosophila neuroblasts. We previously found that this event terminates competence to produce early-born neurons and is mediated by an intronic 250 base-pair element, which we term gene mobility element (GME). Here we found over 800 putative GMEs globally that are chromatin accessible and are Polycomb (PcG) target sites. GMEs appear to be distinct from PcG response elements, however, which are largely chromatin inaccessible in neuroblasts. Performing in situ Hi-C of purified neuroblasts, we found that GMEs form megabase-scale chromatin interactions, spanning multiple topologically associated domain borders, preferentially contacting other GMEs. These interactions are cell type and stage-specific. Notably, GMEs undergo developmentally-timed mobilization to/from the neuroblast nuclear lamina, and domain swapping a GFP reporter transgene intron with a GME relocates the transgene to the nuclear lamina in embryos. We propose that GMEs constitute a genome organizational framework and mediate gene-to-lamina mobilization during progenitor competence state transitions in vivo.
Gene mobility elements mediate cell type specific genome organization and radial gene movement in vivo.
基因移动元件介导细胞类型特异性基因组组织和体内放射状基因运动
阅读:15
作者:Lucas Tanguy, Wang Lin-Ing, Glass-Klaiber Juniper, Quiroz Elvis, Patra Sofiya, Molotkova Natalia, Kohwi Minoree
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2024 | 起止号: | 2024 Dec 1 |
| doi: | 10.1101/2024.11.30.626181 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
