Classically activated macrophages undergo functionally significant nucleotide metabolism remodelling driven by nitric oxide.

阅读:3
作者:John Steven V, Seim Gretchen L, Erazo-Flores Billy J, Votava James A, Urquiza Uzziah S, Arp Nicholas L, Steill John, Freeman Jack, Carnevale Lauren N, Roberts Isaiah, Qing Xin, Lipton Stuart A, Stewart Ron, Knoll Laura J, Fan Jing
During an immune response, macrophages specifically reprogramme their metabolism to support functional changes. Here, we revealed that nucleotide metabolism is one of the most significantly reprogrammed pathways upon classical activation. Specifically, de novo synthesis of pyrimidines is maintained up to uridine monophosphate, but blocked at cytidine triphosphate and deoxythymidine monophosphate synthesis; de novo synthesis of purines is shut off at the last step (catalysed by AICAR transformylase/IMP cyclohydrolase, ATIC), and cells switch to increased purine salvage. Nucleotide degradation to nitrogenous bases is upregulated but complete oxidation of purine bases (catalysed by xanthine oxidoreductase, XOR) is inhibited, diverting flux into salvage. Mechanistically, nitric oxide was identified as a major regulator of nucleotide metabolism, simultaneously driving multiple key changes, including the transcriptional downregulation of Tyms and profound inhibition of ATIC and XOR. Inhibiting purine salvage using Hgprt knockout or inhibition alters the expression of many stimulation-induced genes, suppresses macrophage migration and phagocytosis, and increases the proliferation of the intracellular parasite Toxoplasma gondii. Together, these results thoroughly uncover the dynamic reprogramming of macrophage nucleotide metabolism upon classical activation and elucidate the regulatory mechanisms and functional significance of such reprogramming.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。