Macrophages exhibit heterogeneity due to their presence in different tissues that have distinct cell fates. Ferroptosis is one type of cellular fate, but the sensitivity of different types of macrophages to ferroptosis and the associated molecular mechanisms are not clear. This study explored the ferroptosis sensitivity of bone marrow and splenic macrophage, focusing on the contribution of ferritinophagy. We found that bone marrow M2 macrophages were more susceptible to ferroptosis, which was attributed to their lower solute carrier family 40 member 1 (SLC40A1) and ferritin heavy/light chain (FTH/L) expression and higher labile iron levels compared to those of splenic macrophages. Further, ferritinophagy activation, particularly in M2 macrophages, was identified as the primary cause of increased labile iron levels, as evidenced by experiments using autophagic flux modifiers and RAW264.7 cells with autophagy related 5 (ATG5) and nuclear receptor coactivator 4 (NCOA4) knockdown and NCOA4 knockout. These results provide a new direction for further understanding the heterogeneity and functionality of macrophages, and offers innovative treatments for a variety of health issues in which macrophage regulation plays a critical role.
Ferritinophagy activation states determine the susceptibility to ferroptosis of macrophages in bone marrow and spleen.
铁蛋白自噬激活状态决定了骨髓和脾脏巨噬细胞对铁死亡的敏感性
阅读:9
作者:Lai Xin, Wu Aimin, Liu Yao, Liu Chen, Chen Junzhou, Gu Ke, Yu Bing, Yan Hui, Luo Junqiu, Zheng Ping, Yu Jie, Chen Daiwen
| 期刊: | International Journal of Biological Sciences | 影响因子: | 10.000 |
| 时间: | 2025 | 起止号: | 2025 Jul 11; 21(10):4567-4585 |
| doi: | 10.7150/ijbs.114545 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
