Artemisinin inhibits neuronal ferroptosis in Alzheimer's disease models by targeting KEAP1.

青蒿素通过靶向 KEAP1 抑制阿尔茨海默病模型中的神经元铁死亡

阅读:7
作者:Deng Peng-Xi, Silva Marta, Yang Na, Wang Qing, Meng Xin, Ye Ke-Qiang, Gao Hong-Chang, Zheng Wen-Hua
Ferroptosis, a form of cell death characterized by lipid peroxidation, is involved in neurodegenerative diseases such as Alzheimer´s disease (AD). Recent studies have shown that a first-line antimalarial drug artemisinin is effective to counteract AD pathology. In this study, we investigated the protective effect of artemisinin against neuronal ferroptosis and the underlying mechanisms. In hippocampal HT22 cells, pretreatment with artemisinin dose-dependently protected against Erastin-induced cell death with an EC(50) value of 5.032 µM, comparable to the ferroptosis inhibitor ferrostatin-1 (EC(50) = 4.39 µM). We demonstrated that artemisinin (10 μM) significantly increased the nuclear translocation of Nrf2 and upregulated SLC7A11 and GPX4 in HT22 cells. Knockdown of Nrf2, SLC7A11 or GPX4 prevented the protective action of artemisinin, indicating that its anti-ferroptosis effect is mediated by the Nrf2-SLC7A11-GPX4 pathway. Molecular docking and Co-Immunoprecipitation (Co-IP) analysis revealed that artemisinin competitively binds with KEAP1, promoting the dissociation of KEAP1-Nrf2 complex and inhibiting the ubiquitination of Nrf2. Intrahippocampal injection of imidazole-ketone-Erastin (IKE) induced ferroptosis in mice accompanied by cognitive deficits evidenced by lower preference for exploration of new objects and new object locations in the NOR and NOL tests. Artemisinin (5, 10 mg/kg, i.p.) dose-dependently inhibited IKE-induced ferroptosis in hippocampal CA1 region and ameliorated learning and memory impairments. Moreover, we demonstrated that artemisinin reversed Aβ(1-42)-induced ferroptosis, lipid peroxidation and glutathione depletion in HT22 cells, primary hippocampal neurons, and 3×Tg mice via the KEAP1-Nrf2 pathway. Our results demonstrate that artemisinin is a novel neuronal ferroptosis inhibitor that targets KEAP1 to activate the Nrf2-SLC7A11-GPX4 pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。