TLR9-Driven S-Palmitoylation in Dendritic Cells Reveals Immune and Metabolic Protein Targets.

TLR9驱动的树突状细胞S-棕榈酰化揭示了免疫和代谢蛋白靶点

阅读:5
作者:Quiroz Juan N, Sielaff Malte, Kondrateva Daria, Boukhallouk Fatima, Godoy Gloria J, Molina Cecilia R, Moonen Brecht, Motran Claudia C, Bogie Jeroen, Luján Hugo D, Tenzer Stefan, Sparwasser Tim, Berod Luciana
Dendritic cells (DCs) rely on Toll-like receptor 9 (TLR9) to detect unmethylated CpG motifs in microbial DNA, triggering essential immune responses. While the downstream signaling pathways of TLR9 activation are well characterized, their impact on S-palmitoylation is unknown. S-palmitoylation, involving the reversible attachment of palmitic acid to cysteine residues, plays a crucial role in regulating protein function and is catalyzed by the ZDHHC family of palmitoyl-acyltransferases (PATs). In this study, we investigated the S-palmitoylated proteome of bone marrow-derived GM-CSF DCs (GM-DCs) at resting and following TLR9 activation with CpGB. Using the click-chemistry-compatible analog 17-octadecynoic acid (17-ODYA) and mass spectrometry (MS)-based proteomics, we characterized dynamic remodeling of S-palmitoylation in response to TLR9 activation. This included enrichment of targets involved in immune and metabolic pathways. Transcriptomic analysis of mice and human DCs revealed TLR9-driven modulation of PAT-encoding genes. Subsequently, we explored the contribution of Zdhhc9 expression to the regulation of S-palmitoylation in DCs. Using gene knockout approaches, we identified candidate protein targets potentially linked to ZDHHC9 activity. Interestingly, modulation of Zdhhc9 expression alone did not influence DC maturation, suggesting that other PATs might compensate for its activity. Together, our findings reveal a novel layer of regulation in TLR9 signaling mediated by S-palmitoylation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。