Dopamine signaling drives skin invasion by human-infective nematodes.

多巴胺信号驱动人类感染性线虫侵入皮肤

阅读:5
作者:Patel Ruhi, Romero Aracely Garcia, Bryant Astra S, Agak George W, Hallem Elissa A
Skin-penetrating nematodes are one of the most prevalent causes of disease worldwide - nearly 15% of the global population is infected with at least one species of skin-penetrating nematode(1,2). The World Health Organization has targeted these parasites for elimination by 2030(3), but the lack of preventative measures is a major obstacle to this goal. The infective larvae of skin-penetrating nematodes enter hosts through skin(4), and blocking skin penetration is an as-yet unexplored approach for preventing infection. However, in order to prevent worm ingress via the skin, an understanding of the behavioral and neural mechanisms that drive skin penetration is required. Here, we describe the skin-penetration behaviors of the human-infective threadworm Strongyloides stercoralis. Using fluorescently labeled worms to enable visualization on the skin coupled with time-lapse microscopy, we show that S. stercoralis engages in repeated cycles of pushing, puncturing, and crawling on the skin surface before penetrating the skin. Pharmacological inhibition of dopamine signaling inhibits these behaviors in S. stercoralis and the human hookworm Ancylostoma ceylanicum, suggesting a critical role for dopamine signaling in driving skin penetration across distantly related nematodes. CRISPR-mediated disruption of dopamine biosynthesis and chemogenetic silencing of dopaminergic neurons also inhibit skin penetration. Finally, inactivation of the TRPN channel TRP-4, which is expressed in the dopaminergic neurons, blocks skin penetration on both rat and human skin. Our results suggest that drugs targeting TRP-4 and other nematode-specific components of the dopaminergic pathway could be developed into topical prophylactics that block skin penetration, thereby preventing infections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。