Intramuscular fat (IMF), or marbling, is a critical indicator of goat meat quality. Non-coding RNAs play a key role in the formation and deposition of IMF in vertebrates by regulating genes involved in its synthesis, degradation, and transport. The competing endogenous RNA (ceRNA) hypothesis identifies circular RNAs (circRNAs) as natural "sponges" for microRNAs (miRNAs). However, the precise mechanisms of circRNAs in goat IMF remain poorly understood. In the current study, we utilized existing sequencing data to construct a ceRNA regulatory network associated with intramuscular adipogenesis and fat deposition in goats. Our goal was to elucidate the post-transcriptional regulatory mechanism of family with sequence similarity 49 member B (FAM49B). Functionally, FAM49B was found to inhibit the differentiation of intramuscular preadipocytes and to directly interact with miR-27a-5p. Mechanistically, dual-luciferase reporter assays and quantitative real-time PCR (qRT-PCR) confirmed the interaction between circ0011446 and miR-27a-5p. Circ0011446 enhanced the expression of FAM49B mRNA and protein through post-transcriptional regulation. As a ceRNA, circ0011446 competitively binds miR-27a-5p, preventing miR-27a-5p from degrading FAM49B. In conclusion, our findings demonstrate that circ0011446 suppresses goat adipogenic differentiation of intramuscular preadipocytes by regulating the expression of the downstream target gene FAM49B through miR-27a-5p sequestration. This study provides a reference for goat meat quality or livestock breeding.
Circ_0011446 Regulates Intramuscular Adipocyte Differentiation in Goats via the miR-27a-5p/FAM49B Axis.
阅读:3
作者:Wang Jian-Mei, Lv Jin-Shi, Liu Ke-Han, Li Yan-Yan, Zhu Jiang-Jiang, Xiong Yan, Wang Yong, Lin Ya-Qiu
期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
时间: | 2025 | 起止号: | 2025 Mar 5; 26(5):2294 |
doi: | 10.3390/ijms26052294 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。