This study investigates the quasi-static and viscoelastic properties of additively manufactured (AM) PETG reinforced with short carbon fibres. Samples were manufactured using different parameters in terms of the infill pattern, porosity, and annealing condition. Tensile and compressive tests were conducted to determine quasi-static properties such as Young's modulus and toughness, and dynamic mechanical analysis was used under a frequency sweep of 1-100 Hz to describe the viscoelastic behaviour of the composites. The major impacts and responses between the print parameters were quantified using Analyses of Variance (ANOVAs), which revealed the major contributor to each mechanical property. Fractography on the tensile samples using scanning electron microscopy demonstrated fibre pull-out, indicating poor fibre-matrix bonding, but also revealed interfacial bonding between raster lines in the annealed samples. This had a prominent effect on the properties of latitudinal samples where the force applied was perpendicular to the raster lines. Generally, porosity appeared to have the greatest contribution to the variance in the mechanical properties, with the exception of the tensile modulus, where the infill pattern had a more substantial effect. Annealing caused a consistent increase in the tensile modulus of the tested samples, which can be used to support the design and optimisation of AM parts when they are used under specific loading conditions.
Additively Manufactured Carbon Fibre PETG Composites: Effect of Print Parameters on Mechanical Properties.
增材制造碳纤维PETG复合材料:打印参数对力学性能的影响
阅读:9
作者:Economides Andreas L, Islam Md Niamul, Baxevanakis Konstantinos P
| 期刊: | Polymers | 影响因子: | 4.900 |
| 时间: | 2024 | 起止号: | 2024 Nov 28; 16(23):3336 |
| doi: | 10.3390/polym16233336 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
