Biomaterials and biomedical devices interact with the human body at different levels. At one end of the spectrum, medical devices in contact with tissue pose risks depending on whether they are deployed on the skin or implanted. On the other hand, food packaging and associated material technologies must also be biocompatible to prevent the transfer of harmful molecules and contamination of food, which could impact human health. These seemingly unlinked domains converge into a shared need for the elaboration of new laboratory evaluation protocols that consider recent advances in biomaterials and biodevices, coupled with increasing legal restrictions on the use of animal models. Here, we aim to select and prescribe physiologically relevant microenvironment conditions for biocompatibility testing of novel biomaterials and biodevices. Our discussion spans (1) the development of testing protocols according to material classes, (2) current legislation and standards, and (3) the preparation of biomimetic setups that replicate the microenvironment, with a focus on the multidisciplinary dimension of such studies. Testing spans several characterization domains, beginning with chemical properties, followed by mechanical integrity and, finally, biological response. Biomimetic testing conditions typically include temperature fluctuations, humidity, mechanical stress and loading, exposure to body fluids, and interaction with multifaceted biological systems.
Biomimetic Design and Assessment via Microenvironmental Testing: From Food Packaging Biomaterials to Implantable Medical Devices.
通过微环境测试进行仿生设计与评估:从食品包装生物材料到植入式医疗器械
阅读:9
作者:Portan Diana V, Koliadima Athanasia, Kapolos John, Azamfirei Leonard
| 期刊: | Biomimetics | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jun 5; 10(6):370 |
| doi: | 10.3390/biomimetics10060370 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
