Proteogenomic analysis reveals adaptive strategies for alleviating the consequences of aneuploidy in cancer.

蛋白质基因组学分析揭示了缓解癌症中非整倍体后果的适应性策略

阅读:10
作者:Bökenkamp Jan-Eric, Keuper Kristina, Redel Stefan, Barthel Karen, Johnson Leah, Becker Amelie, Wieland Angela, Räschle Markus, Storchová Zuzana
Aneuploidy is prevalent in cancer and associates with fitness advantage and poor patient prognosis. Yet, experimentally induced aneuploidy initially leads to adverse effects and impaired proliferation, suggesting that cancer cells must adapt to aneuploidy. We performed in vitro evolution of cells with extra chromosomes and obtained cell lines with improved proliferation and gene expression changes congruent with changes in aneuploid cancers. Integrated analysis of cancer multi-omics data and model cells revealed increased expression of DNA replicative and repair factors, reduced genomic instability, and reduced lysosomal degradation. We identified E2F4 and FOXM1 as transcription factors strongly associated with adaptation to aneuploidy in vitro and in cancers and validated this finding. The adaptation to aneuploidy also coincided with specific copy number aberrations that correlate with poor patient prognosis. Chromosomal engineering mimicking these aberrations improved aneuploid cell proliferation, while loss of previously present extra chromosomes impaired it. The identified common adaptation strategies suggest replication stress, genomic instability, and lysosomal stress as common liabilities of aneuploid cancers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。