Sequentially activated death complexes regulate pyroptosis and IL-1β release in response to Yersinia blockade of immune signaling

顺序激活的死亡复合物调节细胞焦亡和 IL-1β 释放,以响应耶尔森氏菌阻断免疫信号

阅读:8
作者:Ronit Schwartz Wertman, Christina K Go, Benedikt S Saller, Olaf Groß, Phillip Scott, Igor E Brodsky

Abstract

The Yersinia virulence factor YopJ potently inhibits immune signaling in macrophages by blocking activation of the signaling kinases TAK1 and IKK. In response, macrophages trigger a backup pathway of host defense that mediates cell death via the apoptotic enzyme caspase-8 and pyroptotic enzyme caspase-1. While caspase-1 is normally activated within multiprotein inflammasome complexes that contain the adaptor ASC and NLRs, which act as sensors of pathogen virulence, caspase-1 activation following Yersinia blockade of TAK1/IKK surprisingly requires caspase-8 and is independent of all known inflammasome components. Here, we report that caspase-1 activation by caspase-8 requires both caspase-8 catalytic and auto-processing activity. Intriguingly, while caspase-8 serves as an essential initiator of caspase-1 activation, caspase-1 amplifies its own activation through a feed-forward loop involving auto-processing, caspase-1-dependent cleavage of the pore-forming protein GSDMD, and subsequent activation of the canonical NLRP3 inflammasome. Notably, while caspase-1 activation and cell death are independent of inflammasomes during Yersinia infection, IL-1β release requires the canonical NLPR3 inflammasome. Critically, activation of caspase-8 and activation of the canonical inflammasome are kinetically and spatially separable events, as rapid capase-8 activation occurs within multiple foci throughout the cell, followed by delayed subsequent assembly of a single canonical inflammasome. Importantly, caspase-8 auto-processing normally serves to prevent RIPK3/MLKL-mediated necroptosis, and in caspase-8's absence, MLKL triggers NLPR3 inflammasome activation and IL-1β release. Altogether, our findings reveal that functionally interconnected but temporally and spatially distinct death complexes differentially mediate pyroptosis and IL-1β release to ensure robust host defense against pathogen blockade of TAK1 and IKK.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。