This work investigates the effect of nanoclay addition-specifically natural montmorillonite (MMT) and organo-modified montmorillonite (O-MMT)-on the elastocaloric performance of natural rubber (NR), a promising material for solid-state cooling due to its non-toxicity, low cost, and ability to exhibit large adiabatic temperature changes under moderate stress (~a few MPa). Despite these advantages, the cooling efficiency of NR remains lower than that of conventional vapor-compression systems. Therefore, improving the cooling capacity of NR is essential for the development of solid-state cooling technologies competitive with existing ones. To address this, two series of NR-based nanocomposites, containing 1, 3, and 5 phr nanofiller, were prepared by melt compounding and hot pressing and characterized in terms of morphology, thermal, mechanical, and elastocaloric properties. The results highlighted that the better dispersion of the organoclays within the rubber matrix promoted not only a better mechanical behavior (in terms of stiffness and strength), but also a significantly enhanced cooling performance compared to MMT nanofilled systems. Moreover, NR/O-MMT samples demonstrated up to a ~45% increase in heat extracted per refrigeration cycle compared to the unfilled NR, with a coefficient of performance (COP) up to 3, approaching the COP of conventional vapor-compression systems, typically ranging between 3 and 6. The heat extracted per refrigeration cycle of NR/O-MMT systems resulted in approx. 16 J/cm(3), higher with respect to the values reported in the literature for NR-based systems (ranging between 5 and 12 J/cm(3)). These findings emphasize the potential of organoclays in enhancing the refrigeration potential of NR for novel state cooling applications.
Elastocaloric Performance of Natural Rubber: The Role of Nanoclay Addition.
阅读:3
作者:Bianchi Marica, Fambri Luca, Bortolotti Mauro, Pegoretti Alessandro, Dorigato Andrea
期刊: | Molecules | 影响因子: | 4.600 |
时间: | 2025 | 起止号: | 2025 Jul 19; 30(14):3035 |
doi: | 10.3390/molecules30143035 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。