Multimodal Nanoplasmonic and Fluorescence Imaging for Simultaneous Monitoring of Single-Cell Secretory and Intracellular Dynamics.

用于同时监测单细胞分泌和细胞内动力学的多模态纳米等离子体和荧光成像

阅读:8
作者:Ansaryan Saeid, Chiang Yung-Cheng, Liu Yen-Cheng, Reichenbach Patrick, Irving Melita, Altug Hatice
Current imaging technologies are limited in their capability to simultaneously capture intracellular and extracellular dynamics in a spatially and temporally resolved manner. This study presents a multimodal imaging system that integrates nanoplasmonic sensing with multichannel fluorescence imaging to concomitantly analyze intracellular and extracellular processes in space and time at the single-cell level. Utilizing a highly sensitive gold nanohole array biosensor, the system provides label-free and real-time monitoring of extracellular secretion, while implementing nanoplasmonic-compatible multichannel fluorescence microscopy enables to visualize the interconnected intracellular activities. Combined with deep-learning-assisted image processing, this integrated approach allows multiparametric and simultaneous study of various cellular constituents in hundreds of individual cells with subcellular spatial and minute-level temporal resolution over extended periods of up to 20 h. The system's utility is demonstrated by characterizing a range of secreted biomolecules and fluorescence toolkits across three distinct applications: visualization of secretory behaviors along with subcellular organelles and metabolic processes, concurrent monitoring of protein expression and secretion, and assessment of cell cycle phases alongside their corresponding secretory profiles. By offering comprehensive insights, the multifunctional approach is expected to enhance holistic readouts of biological systems, facilitating new discoveries in both fundamental and translational sciences.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。