Apolipoprotein E4 (ApoE4), the major genetic risk factor for Alzheimer's disease (AD), is vital for understanding cellular processes involved in AD pathogenesis. Evidence implicates endosomes as a central player in AD, where endosomal enlargement in neurons is among the earliest changes in AD. This enlargement was reported to be enhanced in APOE4 carriers. Cells internalize ApoE into endosomes for lipid delivery, and previous studies indicate that ApoE4 influences endosomes. However, the effect of ApoE4 on endosome function seems different depending on cell type, and our understanding of how ApoE4 influences endosomes in mature neurons, the cell type degenerating in AD, remains limited. We aimed to increase understanding of the impact ApoE4 has on endosomal dynamics in primary neurons and whether external triggers, such as time-in-culture/aging, synaptic activity, and cholesterol, influence these endosomal changes. We show that without external triggers, mature primary neurons from ApoE knockout (KO), ApoE3, and ApoE4 mice show no major differences in endosomal appearance and function and adapt similarly to increased synaptic activity. However, with prolonged time in culture, neurons with ApoE4 show reduced degradative ability, along with a decreased number of active lysosomal compartments. Moreover, when supplying aged cultures with cholesterol, ApoE4 neurons have a predisposition to accumulate cholesterol in the endolysosomal system. Taken together, we show that ApoE4 impacts endolysosome function in primary neurons, but that changes emerge only after prolonged time in culture. A better understanding of how ApoE4 impacts neurons could provide important insights into ApoE4-directed therapy for AD.
Neuronal endolysosomal alterations induced by Apolipoprotein E4 emerge over time in primary neurons.
载脂蛋白 E4 诱导的神经元内溶酶体改变会在原代神经元中逐渐出现
阅读:4
作者:Nyberg Emma, Konings Sabine C, Lindblom Nils, Israelsson Bodil, Klementieva Oxana, Martinsson Isak, Gouras Gunnar K
| 期刊: | Journal of Biological Chemistry | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Aug;301(8):110479 |
| doi: | 10.1016/j.jbc.2025.110479 | 研究方向: | 神经科学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
