Targeting GSK3β and signaling pathways in breast cancer: role of individual members of miR- 23/24/27 cluster.

靶向 GSK3β 和信号通路在乳腺癌中的作用:miR-23/24/27 簇中各个成员的作用

阅读:6
作者:Gupta Harshi, Raghubansi Anushka, Bharat, Sharma Kritika, Zutshi Krittika, Panchal Partibha, Bhattacharya Sushant, Ranjan Piyush, Puri Gopal, Saini Neeru
BACKGROUND: The high mortality rate of breast cancer and the difficulties associated with therapeutic resistance, especially in cases where targeted treatments are unavailable, make it a serious threat to women's health. This study examines the relationship between three mature microRNAs (miRNAs) that are clustered together, namely miR- 23a, miR- 27a, and miR- 24-2, as well as their potential correlation with breast cancer. METHODS: We identified common gene targets of miR- 23a, miR- 27a, and miR- 24-2 using computational analysis. We also checked for the levels of miR- 23a, miR- 27a, and miR- 24-2 in 26 breast tumor tissues (with their matched control) as well as MCF7 and MDA-MB- 231 cell lines using qRT-PCR. Dual-luciferase reporter assay was conducted to validate the binding site of the microRNAs in their target gene. Western blot was performed to study the expression of various breast cancer related genes in the presence of the three microRNAs. In addition, the effect of microRNAs in cancer cell metastasis and cell division was carried out using invasion and cell cycle assay. RESULTS: Computational analysis identified key genes, including GSK3β, NCOA1 and SP1, which are functionally linked to tumor progression and various other malignancies. All three microRNAs were found to be significantly downregulated in the breast cancer tissue samples in comparison to their respective controls. Kaplan-Meier plot analysis revealed that the expression levels of these genes and associated microRNAs correlates with breast cancer patient survival rates. Reduced SP1 and NCOA1 levels predicted a worse prognosis, but elevated levels of GSK3β were linked with decreased survival. Moreover, miR- 23a and miR- 24-2 specifically target GSK3β, potentially disrupting the Wnt/β-catenin pathway involved in breast cancer development. Functional tests showed that miR- 23a, miR- 27a and miR- 24-2 affect expression of EMT related genes, influencing cell invasion and migration, impacting ERK signaling and EMT, critical in the spread of breast cancer. CONCLUSION: This study unlocks the potential of targeting the microRNA cluster as a therapeutic approach and emphasizes the complex regulatory roles of each individual members of the miR- 23a/27a/24-2 cluster in the pathogenesis of breast cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。