Pathogen mutations present an inevitable and challenging problem for therapeutics and the development of mutation-tolerant anti-infective drugs to strengthen global health and combat evolving pathogens is urgently needed. While spike proteins on viral surfaces are attractive targets for preventing viral entry, they mutate frequently, making it difficult to develop effective therapeutics. Here, we used a structure-guided strategy to engineer an inhibitor peptide against the SARS-CoV-2 spike, called CeSPIACE, with mutation-tolerant and potent binding ability against all variants to enhance affinity for the invariant architecture of the receptor-binding domain (RBD). High-resolution structures of the peptide complexed with mutant RBDs revealed a mechanism of mutation-tolerant inhibition. CeSPIACE bound major mutant RBDs with picomolar affinity and inhibited infection by SARS-CoV-2 variants in VeroE6/TMPRSS2 cells (IC(50) 4 pM to 13 nM) and demonstrated potent in vivo efficacy by inhalation administration in hamsters. Mutagenesis analyses to address mutation risks confirmed tolerance against existing and/or potential future mutations of the RBD. Our strategy of engineering mutation-tolerant inhibitors may be applicable to other infectious diseases.
Structure-guided engineering of a mutation-tolerant inhibitor peptide against variable SARS-CoV-2 spikes.
针对SARS-CoV-2变异刺突蛋白,通过结构导向工程设计一种耐突变抑制肽
阅读:8
作者:Nakamura Shun, Tanimura Yukihiro, Nomura Risa, Suzuki Hiroshi, Nishikawa Kouki, Kamegawa Akiko, Numoto Nobutaka, Tanaka Atsushi, Kawabata Shigeru, Sakaguchi Shoichi, Emi Akino, Suzuki Youichi, Fujiyoshi Yoshinori
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2025 | 起止号: | 2025 Jan 28; 122(4):e2413465122 |
| doi: | 10.1073/pnas.2413465122 | 研究方向: | 炎症/感染 |
| 疾病类型: | 新冠 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
