Directed evolution of engineered virus-like particles with improved production and transduction efficiencies.

定向进化工程病毒样颗粒,以提高其生产和转导效率

阅读:9
作者:Raguram Aditya, An Meirui, Chen Paul Z, Liu David R
Engineered virus-like particles (eVLPs) are promising vehicles for transient delivery of proteins and RNAs, including gene editing agents. We report a system for the laboratory evolution of eVLPs that enables the discovery of eVLP variants with improved properties. The system uses barcoded guide RNAs loaded within DNA-free eVLP-packaged cargos to uniquely label each eVLP variant in a library, enabling the identification of desired variants following selections for desired properties. We applied this system to mutate and select eVLP capsids with improved eVLP production properties or transduction efficiencies in human cells. By combining beneficial capsid mutations, we developed fifth-generation (v5) eVLPs, which exhibit a 2-4-fold increase in cultured mammalian cell delivery potency compared to previous-best v4 eVLPs. Analyses of v5 eVLPs suggest that these capsid mutations optimize packaging and delivery of desired ribonucleoprotein cargos rather than native viral genomes and substantially alter eVLP capsid structure. These findings suggest the potential of barcoded eVLP evolution to support the development of improved eVLPs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。