Modular in vivo assembly of Arabidopsis FCA oligomers into condensates competent for RNA 3' processing.

拟南芥 FCA 寡聚体在体内模块化组装成能够进行 RNA 3' 加工的凝聚体

阅读:9
作者:Jang Geng-Jen, Payne-Dwyer Alex L, Maple Robert, Wu Zhe, Liu Fuquan, Lopez Sergio G, Wang Yanning, Fang Xiaofeng, Leake Mark C, Dean Caroline
Our understanding of the functional requirements underpinning biomolecular condensation in vivo is still relatively poor. The Arabidopsis RNA binding protein FLOWERING CONTROL LOCUS A (FCA) is found in liquid-like nuclear condensates that function in transcription termination, promoting proximal polyadenylation at many target genes in the Arabidopsis genome. To further understand the properties of these condensates in vivo, we used single-particle tracking experiments on FCA reporters stably expressed at endogenous levels in plant nuclei. SEC-MALS analyses suggested that FCA forms a core oligomer consistent with a size of four molecules; in vivo particle tracking indicated that this core molecule multimerizes into higher-order particles. The ensuing assemblies coalesce into macromolecular condensates via the coiled-coil protein FLL2, which is genetically required for FCA function. Accordingly, FLL2 predominately co-localizes with FCA in larger-sized condensates. A missense mutation in the FCA RRM domain, also genetically required for FCA function, reduced average size of both FCA particles and condensates, but did not perturb the core oligomer. Our work points to a modular structure for FCA condensates, involving multimerization of core oligomers assembled into functional macromolecular condensates via associated RNA and FLL2 interactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。