High-resolution spatial transcriptomics in fixed tissue using a cost-effective PCL-seq workflow.

利用经济高效的 PCL-seq 工作流程对固定组织进行高分辨率空间转录组学分析

阅读:7
作者:Dong Xue, Hu Mengzhu, Cui Xiaonan, Zhou Wenjian, Cai Jingtao, Mao Guangyao, Shi Weiyang
The spatial heterogeneity of gene expression has driven the development of diverse spatial transcriptomics technologies. Here, we present photocleavage and ligation sequencing (PCL-seq), a spatial indexing method utilizing a light-controlled DNA labeling strategy applied to tissue sections. PCL-seq employs photocleavable oligonucleotides and ligation adapters to construct transcriptional profiles of specific regions of interest (ROIs) designated via microscopically controlled photo-illumination. In frozen mouse embryos, PCL-seq generates spatially aligned gene expression matrices and produces high-quality data, detecting approximately 170,000 unique molecular identifiers (UMIs) and 8600 genes (illumination diameter = 100 µm). Moreover, PCL-seq is compatible with formalin-fixed paraffin-embedded (FFPE) tissues, successfully identifying thousands of differentially enriched transcripts in the digits and vertebrae of mouse embryo FFPE sections. Additionally, PCL-seq achieves subcellular resolution, as demonstrated by differential expression profiling between nuclear and cytoplasmic compartments. These characteristics establish PCL-seq as an accessible and versatile workflow for spatial transcriptomic analyses in both frozen and FFPE tissues with subcellular resolution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。