Rapid, efficient, simple approaches for biological nanoparticle recovery from bodily fluids are required for translating detection strategies from lab diagnostics to low-resource settings, where expensive sample processing instruments such as an ultracentrifuge are not accessible. In this work, we characterize an alternative approach in which intact nanoparticles are filtered from plasma with a nanoporous filtration device that separates particulates within a 100-200 nm diameter range followed by detection on a photonic crystal (PC) biosensor with a portable photonic resonator interferometric scattering microscopy (PRISM) instrument. The biosensor-integrated recovery device's (BIRD) collection efficiency is initially characterized using gold nanoparticles and fluorescent nanobeads suspended in buffer solution and plasma, followed by spiking intact HIV pseudovirus into the same media. We demonstrate a recovery rate of 55.0% for 100 nm diameter AuNP and HIV spiked into the buffer and 11.9% for 100 nm diameter FluoSpheres spiked in human plasma. Using PRISM, we observed the Brownian motion of filtered nanoparticles and virions eluted into the detection compartment, with concentration-dependent counting of transient contact events between the nanoparticles and the PC surface.
A biosensor-integrated filtration device for nanoparticle isolation and label-free imaging.
阅读:3
作者:Liu Leyang, Ayupova Takhmina, Umrao Saurabh, Akin Lucas D, Lee Han-Keun, Tibbs Joseph, Wang Xing, Demirci Utkan, Cunningham Brian T
期刊: | Lab on a Chip | 影响因子: | 5.400 |
时间: | 2025 | 起止号: | 2025 Apr 8; 25(8):2073-2084 |
doi: | 10.1039/d5lc00089k |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。