Cadherins and growth factor receptors - ligand-selective mechano-switches at cadherin junctions.

钙黏蛋白和生长因子受体——钙黏蛋白连接处的配体选择性机械开关

阅读:8
作者:Vu Vinh, Sullivan Brendan, Hebner Evan, Rahil Zainab, Zou Yubo, Leckband Deborah
This study investigated possible mechanisms underlying differences between heterophilic and homophilic cadherin adhesions that influence intercellular mechanics and multicellular organization. Results suggest that homophilic cadherin ligation selectively activates force transduction, such that resulting signaling and mechano-transduction amplitudes are independent of cadherin-binding affinities. Epithelial (E-) and neural (N-)cadherin cooperate with distinct growth factors to mechanically activate force transduction cascades. Prior results have demonstrated that E-cadherin and epidermal growth factor receptor form force-sensitive complexes at intercellular junctions. Here, we show that the reconstitution of N-cadherin force transduction requires the co-expression of N-cadherin and fibroblast growth factor receptor. Mechanical measurements further demonstrated that homophilic ligation initiates receptor tyrosine kinase-dependent force transduction cascades, but heterophilic cadherin ligands fail to activate signaling or generate stereotypical mechano-transduction signatures. The all-or-nothing contrast between mechano-transduction by heterophilic versus homophilic cadherin adhesions supersedes differences in cadherin adhesion strength. This mechano-selectivity impacts cell spreading and traction generation on cadherin substrates. Homophilic ligation appears to be a key that selectively unlocks cadherin mechano-transduction. These findings might reconcile the roles of cadherin recognition and cell mechanics in the organization of multicellular assemblies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。