Construction and use of an adaptive optics two-photon microscope with direct wavefront sensing.

构建和使用具有直接波前传感功能的自适应光学双光子显微镜

阅读:8
作者:Yao Pantong, Liu Rui, Broggini Thomas, Thunemann Martin, Kleinfeld David
Two-photon microscopy, combined with the appropriate optical labelling, enables the measurement and tracking of submicrometer structures within brain cells, as well as the spatiotemporal mapping of spikes in individual neurons and of neurotransmitter release in individual synapses. Yet, the spatial resolution of two-photon microscopy rapidly degrades as imaging is attempted at depths of more than a few scattering lengths into tissue, i.e., below the superficial layers that constitute the top 300-400 µm of the neocortex. To obviate this limitation, we shape the focal volume, generated by the excitation beam, by modulating the incident wavefront via guidestar-assisted adaptive optics. Here, we describe the construction, calibration and operation of a two-photon microscope that incorporates adaptive optics to restore diffraction-limited resolution at depths close to 900 µm in the mouse cortex. Our setup detects a guidestar formed by the excitation of a red-shifted dye in blood serum, used to directly measure the wavefront. We incorporate predominantly commercially available optical, optomechanical, mechanical and electronic components, and supply computer-aided design models of other customized components. The resulting adaptive optics two-photon microscope is modular and allows for expanded imaging and optical excitation capabilities. We demonstrate our methodology in the mouse neocortex by imaging the morphology of somatostatin-expressing neurons that lie 700 µm beneath the pia, calcium dynamics of layer 5b projection neurons and thalamocortical glutamate transmission to L4 neurons. The protocol requires ~30 d to complete and is suitable for users with graduate-level expertise in optics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。