Long-term intravital subcellular imaging with confocal scanning light-field microscopy

利用共聚焦扫描光场显微镜进行长期活体亚细胞成像

阅读:4
作者:Zhi Lu # ,Siqing Zuo # ,Minghui Shi # ,Jiaqi Fan ,Jingyu Xie ,Guihua Xiao ,Li Yu ,Jiamin Wu ,Qionghai Dai

Abstract

Long-term observation of subcellular dynamics in living organisms is limited by background fluorescence originating from tissue scattering or dense labeling. Existing confocal approaches face an inevitable tradeoff among parallelization, resolution and phototoxicity. Here we present confocal scanning light-field microscopy (csLFM), which integrates axially elongated line-confocal illumination with the rolling shutter in scanning light-field microscopy (sLFM). csLFM enables high-fidelity, high-speed, three-dimensional (3D) imaging at near-diffraction-limit resolution with both optical sectioning and low phototoxicity. By simultaneous 3D excitation and detection, the excitation intensity can be reduced below 1 mW mm-2, with 15-fold higher signal-to-background ratio over sLFM. We imaged subcellular dynamics over 25,000 timeframes in optically challenging environments in different species, such as migrasome delivery in mouse spleen, retractosome generation in mouse liver and 3D voltage imaging in Drosophila. Moreover, csLFM facilitates high-fidelity, large-scale neural recording with reduced crosstalk, leading to high orientation selectivity to visual stimuli, similar to two-photon microscopy, which aids understanding of neural coding mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。