Biomechanical control of vascular morphogenesis by the surrounding stiffness

周围组织刚度对血管形态发生的生物力学控制

阅读:2
作者:Yasuyuki Hanada ,Semanti Halder ,Yuichiro Arima ,Misato Haruta ,Honami Ogoh ,Shuntaro Ogura ,Yukihiko Shiraki ,Sota Nakano ,Yuka Ozeki ,Shigetomo Fukuhara ,Akiyoshi Uemura ,Toyoaki Murohara ,Koichi Nishiyama

Abstract

Sprouting angiogenesis is a form of morphogenesis which expands vascular networks from preexisting networks. However, the precise mechanism governing efficient branch elongation driven by directional movement of endothelial cells (ECs), while the lumen develops under the influence of blood inflow, remains unknown. Herein, we show perivascular stiffening to be a major factor that integrates branch elongation and lumen development. The lumen expansion seen during lumen development inhibits directional EC movement driving branch elongation. This process is counter-regulated by the presence of pericytes, which induces perivascular stiffening by promoting the deposition of EC-derived collagen-IV (Col-IV) on the vascular basement membrane (VBM), thereby preventing excessive lumen expansion. Furthermore, inhibition of forward directional movement of the tip EC during lumen development is associated with decreased localization of the F-BAR proteins and Arp2/3 complexes at the leading front. Our results demonstrate how ECs elongate branches, while the lumen develops, by properly building the surrounding physical environment in coordination with pericytes during angiogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。