The GTE4-EML chromatin reader complex concurrently recognizes histone acetylation and H3K4 trimethylation in Arabidopsis.

GTE4-EML染色质读取复合物可同时识别拟南芥中的组蛋白乙酰化和H3K4三甲基化

阅读:6
作者:Qian Feng, Zhao Qiang-Qiang, Zhou Jin-Xing, Yuan Dan-Yang, Liu Zhen-Zhen, Su Yin-Na, Li Lin, Chen She, He Xin-Jian
Histone acetylation and H3K4 trimethylation (H3K4me3) are associated with active transcription. However, how they cooperate to regulate transcription in plants remains largely unclear. Our study revealed that GLOBAL TRANSCRIPTION FACTOR GROUP E 4 (GTE4) binds to acetylated histones and forms a complex with the functionally redundant H3K4me3-binding EMSY-like proteins EML1 or EML2 (EML1/2) in Arabidopsis thaliana. The eml1 eml2 (eml1/2) double mutant exhibits a similar morphological phenotype to gte4, and most of the differentially expressed genes in gte4 were coregulated in eml1/2. Through chromatin immunoprecipitation followed by deep sequencing, we found that GTE4 and EML2 co-occupy protein-coding genes enriched with both histone acetylation and H3K4me3, exerting a synergistic effect on the association of the GTE4-EML complex with chromatin. The association of GTE4 with chromatin requires both its bromodomain and EML-interacting domain. This study identified a complex and uncovered how it concurrently recognizes histone acetylation and H3K4me3 to facilitate gene transcription at the whole-genome level in Arabidopsis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。