The mammalian endoplasmic reticulum (ER) stress sensor inositol-requiring enzyme 1α (IRE1α) is essential for cellular homeostasis and plays key roles in infection responses, including innate immunity and microbicidal activity. While IRE1α functions through the IRE1α-XBP1S axis are known, its XBP1S-independent roles are less well understood, and its functions during fungal infection are still emerging. We demonstrate that Candida albicans activates macrophage IRE1α via C-type lectin receptor signaling independent of protein misfolding, suggesting non-canonical activation. IRE1α enhances macrophage fungicidal activity by promoting phagosome maturation, which is crucial for containing C. albicans hyphae. IRE1α facilitates early phagosomal calcium flux post-phagocytosis, which is required for phagolysosomal fusion. In macrophages lacking the IRE1α endoribonuclease domain, defective calcium flux correlates with fewer ER-early endosome contact sites, suggesting a homeostatic role for IRE1α-promoting membrane contact sites. Overall, our findings illustrate non-canonical IRE1α activation during infection and a function for IRE1α in supporting organelle contact sites to safeguard against rapidly growing microbes.
IRE1α promotes phagosomal calcium flux to enhance macrophage fungicidal activity.
IRE1α促进吞噬体钙流,从而增强巨噬细胞的杀真菌活性
阅读:7
作者:McFadden Michael J, Reynolds Mack B, Michmerhuizen Britton C, Ãlafsson Einar B, Marshall Sofia M, Davis Faith Anderson, Schultz Tracey L, Iwawaki Takao, Sexton Jonathan Z, O'Riordan Mary X D, O'Meara Teresa R
| 期刊: | Cell Reports | 影响因子: | 6.900 |
| 时间: | 2025 | 起止号: | 2025 May 27; 44(5):115694 |
| doi: | 10.1016/j.celrep.2025.115694 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
