Cellular crosstalk mediated by TGF-β drives epithelial-mesenchymal transition in patient-derived multi-compartment biliary organoids.

TGF-β介导的细胞间通讯驱动患者来源的多室胆道类器官发生上皮-间质转化

阅读:4
作者:Ayabe Hiroaki, DePasquale Erica A K, Amarachintha Surya P, Mourya Reena, Li Wenqi, Nalluri Shreya, Fox Sejal R, Konishi Kenichiro, Shivakumar Pranavkumar, Bezerra Jorge A
Deficiencies in the development of epithelial structures and delays in cellular maturation can increase the susceptibility of neonates to disease early in life. To investigate human biliary development and its vulnerability to biliary atresia, a severe pediatric cholangiopathy, we engineered multi-compartment biliary organoids (MBOs) from co-cultures of human liver-derived epithelial organoid cells with human endothelial and mesenchymal cells. MBOs derived from normal livers effectively replicated the epithelial structure of the bile duct epithelium and peribiliary glands (PBGs). Conversely, MBOs from diseased livers exhibited defective epithelial layers, a significant epithelial-mesenchymal transition (EMT), and an activation of the TGF-β/Activin-SMAD2/3 signaling, primarily due to intermediary cell sub-populations. Inhibition of TGF-β signaling suppressed EMT and promoted biliary epithelial development in human MBOs and suppressed the phenotype of experimental biliary atresia in neonatal mice. Thus, the modulation of TGF-β-dependent EMT regulates bile duct epithelial development and influences the susceptibility of neonates to biliary injuries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。