Biohybrid actuators exploit the contraction of biological components (muscle cells) to produce a force. In particular, bottom-up approaches use tissue engineering techniques, by coupling cells with a proper scaffold to obtain constructs undergoing contraction and guaranteeing actuation in biohybrid devices. However, the fabrication of actuators able to recapitulate the organization and maturity of native muscle is not trivial. In this field, quasi-two-dimensional (2D) substrates are raising interest due to their high surface/thickness ratio and the possibility of functionalizing their surface. In this work, we fabricated micropatterned thin films made of poly(styrene-butadiene-styrene) (SBS) doped with barium titanate nanoparticles (BTNPs) for fostering myogenic differentiation. We investigated material concentrations and fabrication process parameters to obtain thin microgrooved films with an average thickness below 1 μm, thus featured by a relatively low flexural rigidity and with an anisotropic topography to guide cell alignment and myotube formation. The embodiment of BTNPs did not significantly affect the film's mechanical properties. Interestingly, the presence of BTNPs enhanced the expression of myogenic differentiation markers (i.e., MYH1, MYH4, MYH8, and ACTA1). The results show the promising potential of SBS thin films doped with BTNPs, opening avenues in the fields of biohybrid actuation and skeletal muscle tissue engineering.
Micropatterned Styrene-Butadiene-Styrene Thin Films Doped with Barium Titanate Nanoparticles: Effects on Myoblast Differentiation.
掺杂钛酸钡纳米粒子的微图案化苯乙烯-丁二烯-苯乙烯薄膜:对成肌细胞分化的影响
阅读:5
作者:Boccoli Leonardo, Drago Elena, Cafarelli Andrea, Vannozzi Lorenzo, Sciullo Angelo, Iberite Federica, Kerdegari Sajedeh, Fujie Toshinori, Gruppioni Emanuele, Canale Claudio, Ricotti Leonardo
| 期刊: | ACS Biomaterials Science & Engineering | 影响因子: | 5.500 |
| 时间: | 2025 | 起止号: | 2025 May 12; 11(5):2910-2921 |
| doi: | 10.1021/acsbiomaterials.4c02468 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
