Reprogramming the tumor microenvironment with c-MYC-based gene circuit platform to enhance specific cancer immunotherapy.

利用基于 c-MYC 的基因回路平台对肿瘤微环境进行重编程,以增强特异性癌症免疫疗法

阅读:4
作者:Zhan Hengji, Wang Hongjin, Pan Bolin, Lu Junlin, Xiao Kanghua, Lai Jiajian, Chen Zehua, Jie Kaiwen, Chen Siting, Li Hong, Lin Tianxin, Chen Xu
Intratumor heterogeneity (ITH) is associated with anti-tumoral immune response and with the efficiency of cancer immunotherapy, yet overcoming ITH remains a significant challenge. Notably, cellular MYC (c-MYC) has been shown to be a pivotal orchestrator of this ITH progression. Here, we develop a c-MYC-based sensing circuit (cMSC) that is activated exclusively by aberrant c-MYC levels, along with an exosome-based cell-to-cell (CtC) system that augments communication among tumor cells, effectively targeting all cells in tumors circumventing the limitations imposed by ITH. Further expression of multifunctional immunostimulatory agents in these cMSC-reprogrammed cancer cells remodels the tumor microenvironment, enhancing selective T-cell-mediated oncolysis. Our cMSC/CtC platform specifically senses aberrant c-MYC expression and subsequently triggers a robust cancer immunotherapeutic response. These findings offer a promising avenue for targeting cancers via precisely sensing c-MYC, overcoming the limitations of ITH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。