Periodontitis, a chronic inflammatory condition, often results in gum tissue damage and can lead to tooth loss. This study explores the role of methyltransferase-like 3 (METTL3) in promoting osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) within an inflammatory microenvironment. An inflammatory environment was simulated in hPDLSCs using lipopolysaccharide (LPS). Both adipogenic and osteogenic differentiation capacities of hPDLSCs were assessed. In LPS-treated hPDLSCs, METTL3 was overexpressed, and alkaline phosphatase (ALP) staining was performed alongside measurements of ALP activity, pro-inflammatory cytokines, METTL3, miR-141-3p, pri-miR-141, Zinc finger E-box binding homeobox 1 (ZEB1), runt-related transcription factor 2 (RUNX2), osteocalcin (OCN). N6-methyladenosine (m6A) and pri-miR-141 levels were quantified, and the binding of miR-141-3p to ZEB1 was analyzed. The results demonstrated that osteogenic differentiation in hPDLSCs was diminished under inflammatory conditions, coinciding with downregulated METTL3 expression. However, METTL3 overexpression enhanced osteogenic differentiation. METTL3 facilitated the conversion of pri-miR-141 into miR-141-3p via m6A modification, resulting in increased miR-141-3p levels, which in turn suppressed ZEB1 expression. Inhibition of miR-141-3p or overexpression of ZEB1 partially counteracted the positive effects of METTL3 on osteogenic differentiation. In conclusion, these findings suggest that METTL3-mediated m6A modification promotes osteogenic differentiation of hPDLSCs within an inflammatory microenvironment through the miR-141-3p/ZEB1 axis.
METTL3 Promotes Osteogenic Differentiation of Human Periodontal Ligament Stem Cells Under the Inflammatory Microenvironment Through the miR-141-3p/ZEB1 Axis.
METTL3 通过 miR-141-3p/ZEB1 轴促进炎症微环境下人牙周膜干细胞的成骨分化
阅读:10
作者:Li Weijia, Alimujiang Adili
| 期刊: | Cell Biochemistry and Biophysics | 影响因子: | 2.500 |
| 时间: | 2025 | 起止号: | 2025 Jun;83(2):1771-1783 |
| doi: | 10.1007/s12013-024-01586-1 | 种属: | Human |
| 研究方向: | 发育与干细胞、细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
