The chronic inflammation in periodontitis suppresses the osteogenic potential of human periodontal ligament stem cells (hPDLSCs), posing a significant challenge to endogenous bone regeneration. To address this, we developed an osteogenic and protein-delivery composite hydrogel system based on metformin carbon dots (MCDs) to enhance the osteogenic potential of hPDLSCs under inflammatory conditions. We successfully synthesized a novel Gel/MCDs@IGF-1 composite hydrogel (Gel) that exhibited excellent biocompatibility and sequentially released MCDs and insulin-like growth factor 1 (IGF-1). First, MCDs were synthesized using a one-step hydrothermal method. MCDs promote the osteogenic differentiation of hPDLSCs under lipopolysaccharide (LPS)-induced inflammatory conditions by activating the PI3K/AKT signaling pathway, and alleviate inflammation. Next, MCDs and IGF-1 were assembled into MCDs@IGF-1 complexes through supramolecular interactions, facilitating efficient IGF-1 delivery and reducing its degradation by trypsin. Furthermore, in vitro and in vivo studies demonstrated that the Gel/MCDs@IGF-1 composite hydrogel effectively recruited stem cells, exerted early anti-inflammatory effects, increased the osteogenesis of hPDLSCs under inflammatory conditions, and significantly promoted alveolar bone regeneration in a Sprague-Dawley (SD) rat model of periodontitis. In conclusion, MCDs, with their dual roles in promoting osteogenesis and protein delivery, are a promising candidate nanoplatform for periodontitis therapy. Additionally, the MCDs-based sequential release hydrogel system presents a novel material strategy for the treatment of periodontitis.
Metformin carbon dots-based osteogenic and protein delivery system to promote bone regeneration in periodontitis.
基于二甲双胍碳点的成骨和蛋白质递送系统,可促进牙周炎中的骨再生
阅读:9
作者:Wei Jingjing, Wang Kai, Li Yongkai, Huang Jiao, Deng Ping, Xia Xianbo, Yang Cong, Xu Ling, Xu Junji
| 期刊: | Bioactive Materials | 影响因子: | 20.300 |
| 时间: | 2025 | 起止号: | 2025 Jul 25; 53:459-479 |
| doi: | 10.1016/j.bioactmat.2025.07.001 | 研究方向: | 炎症/感染 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
