Miquelianin inhibits IAV infection via the MAPK signaling pathway both in vitro and in vivo.

米奎利宁通过 MAPK 信号通路在体外和体内抑制 IAV 感染

阅读:4
作者:Li He, Shen Beilei, Bi Yan, Sun Yan, Zhang Shijun, Xue Kun, Wang Qiuyue, Qian Bingshuo, Zhang Junkui, Fan Lingjun, Fang Zhengyuan, Wang Tiecheng, Gao Yuwei, Yue Donghui
BACKGROUND: Influenza is an acute respiratory infectious disease primarily transmitted through airborne droplets. The prevalence and spread of influenza viruses have significant impacts on global economic development and public health. Current prevention and control strategies for influenza virus infections mainly rely on vaccines and antiviral drugs. However, vaccine efficacy is limited by the antigenic drift and mutation characteristics of influenza viruses, while antiviral drug resistance is increasingly prevalent. Therefore, there is an urgent need for the development of novel antiviral agents. Flavonoids, widely distributed in plants, possess various potent biological properties, including antioxidant, anti-inflammatory, antibacterial, and anticancer activities, which contribute to the management and prevention of numerous diseases. This study aims to investigate the in vitro and in vivo anti-influenza A virus activity of quercetin, taxifolin, and miquelianin, as well as their underlying. METHODS: In vitro infection model (MDCK cells) and mouse lethal infection model of Infuenza A virus were used to evaluate the antiviral activity of quercetin, taxifolin and miquelianin. Subsequently, we applied network pharmacology to elucidate the mechanism of action and validate the findings for miquelianin. RESULTS: Miquelianin effectively inhibits the replication of H1N1-UI182 both in vitro and in vivo and provides protection against lethal H1N1-UI182 infection in mice. Compared to virus-infected controls, miquelianin reduces lung injury. Furthermore, by inhibiting the MAPK signaling pathway, miquelianin prevents the overproduction of cytokines, such as IL-6 and IL-1β, induced by viral infection, thereby alleviating inflammatory responses. CONCLUSION: Miquelianin is a monomer extracted from traditional Chinese medicine, exhibiting inhibitory effects on H1N1-UI182 replication and lung injury mitigation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。