OGDHL regulates nucleotide metabolism, tumor growth, and neuroendocrine marker expression in prostate cancer.

OGDHL 调节前列腺癌中的核苷酸代谢、肿瘤生长和神经内分泌标志物表达

阅读:10
作者:Bernard Matthew J, Ruiz Angel, Diaz Johnny A, Nunley Nicholas M, Dove Rachel N, Heering Kylie Y, Bopardikar Sachi, Gallardo Andrea, Hashimoto Takao, Agrawal Raag, Smith Chad M, Wilde Blake R, Matulionis Nedas, Richards Helen M, Sharifi Marina N, Lang Joshua M, Zhao Shuang G, Haffner Michael C, Boutros Paul C, Christofk Heather R, Goldstein Andrew S
Cells regularly adapt their metabolism in response to changes in their microenvironment or biosynthetic needs. Prostate cancer cells leverage this metabolic plasticity to evade therapies targeting the androgen receptor (AR) signaling pathway. For example, nucleotide metabolism plays a critical role in treatment-resistant prostate cancer by supporting DNA replication, DNA damage response and cell fate decisions. Identifying novel regulators of nucleotide metabolism in treatment-resistant cancer that are dispensable for the health of normal cells may lead to new therapeutic approaches less toxic than commonly used chemotherapies targeting nucleotide metabolism. We identify the metabolic enzyme Oxoglutarate Dehydrogenase-Like (OGDHL), named for its structural similarity to the tricarboxylic acid (TCA) cycle enzyme Oxoglutarate Dehydrogenase (OGDH), as a regulator of nucleotide metabolism, tumor growth, and treatment-induced plasticity in prostate cancer. While OGDHL is a tumor-suppressor in various cancers, we find that its loss impairs prostate cancer cell proliferation and tumor formation while having minimal impact on TCA cycle activity. Loss of OGDHL profoundly decreases nucleotide metabolite pools, induces the DNA damage response marker Ɣ2AX, and alters androgen receptor inhibition-induced plasticity, including suppressing the neuroendocrine markers DLL3 and HES6. Finally, OGDHL is highly expressed in neuroendocrine prostate cancer (NEPC). These findings support an unexpected role of OGDHL in prostate cancer, where it functions to sustain nucleotide pools for proliferation, DNA repair, and AR inhibition-induced plasticity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。