Large-scale transcriptome mining enables macrocyclic diversification and improved bioactivity of the stephanotic acid scaffold.

大规模转录组挖掘能够实现大环多样化,并提高斯蒂芬酸骨架的生物活性

阅读:8
作者:Wang Xiaofeng, Shafiq Khadija, Ousley Derrick A, Chigumba Desnor N, Davis Dulciana, McDonough Kali M, Mydy Lisa S, Sexton Jonathan Z, Kersten Roland D
Nearly 10,000 plant species are represented by RNA-seq datasets in the NCBI sequence read archive, which are difficult to search in unassembled format due to database size. Here, we optimize RNA-seq assembly to transform most of this public RNA-seq data to a searchable database for biosynthetic gene discovery. We test our transcriptome mining pipeline towards the diversification of moroidins, which are plant ribosomally-synthesized and posttranslationally-modified peptides (RiPPs) biosynthesized from copper-dependent peptide cyclases. Moroidins are bicyclic compounds with a conserved stephanotic acid scaffold, which becomes cytotoxic to non-small cell lung adenocarcinoma cells with an additional C-terminal macrocycle. We discover moroidin analogs with second ring structures diversified at the crosslink and the non-crosslinked residues including a moroidin analog from water chickweed, which exhibits higher cytotoxicity against lung adenocarcinoma cells than moroidin. Our study expands stephanotic acid-type peptides to grasses, Lowiaceae, mints, pinks, and spurges while demonstrating that large-scale transcriptome mining can broaden the medicinal chemistry toolbox for chemical and biological exploration of eukaryotic RiPP lead structures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。