Pathogenic morphological signatures of perturbations in mitochondrial-related genes revealed by pooled imaging assay.

通过联合成像分析揭示线粒体相关基因扰动的致病形态学特征

阅读:12
作者:Kremitzki Colin, Waligorski Jason, Bachman Graham, Ali Lina Mohammed, Bramley John, Vakaki Maria, Chandrasekaran Vinay, Patel Purva, Mathur Dhruv, Hime Paul, Mitra Robi, Milbrandt Jeff, Buchser William
Mutations in mitochondrial-related genes underlie numerous neurodegenerative diseases, yet the significance of most variants remains uncertain concerning disease phenotypes. Several thousand genes have been shown to regulate mitochondria in eukaryotic cells, but which of these genes are necessary for proper mitochondrial function and dynamics? We investigated the degree of morphological disruptions in mitochondrial gene-silenced cells to understand the genetic contribution to the expected mitochondrial phenotype and to identify potentially pathogenic variants like pathogenic mutations in MFN2. We analyzed 5835 gRNAs in a high dimensional phenotypic dataset produced by the image-based pooled analysis platform Raft-Seq. Using the MFN2-mutant cell phenotype, we identified several genes, including TMEM11, TIMM8A, NDUFAF4, NDUFAF7, and NDUFS5 (NADH ubiquinone oxidoreductase-related genes), as crucial for normal mitochondrial dynamics in human U2OS cells. Additionally, we found several missense and UTR variants within the genes SLC25A19 and ATAD3A as drivers of mitochondrial aggregation. By examining multiple features instead of a single readout, this analysis was powered to detect genes which had morphological 'signatures' aligned with MFN2-mutant phenotypes. Reanalysis with anomaly detection revealed other critical genes, including APOOL, MCEE, NIT, PHB, and SLC16A7, which perturb mitochondrial network morphology in a manner divergent from MFN2. These studies show causal links between gene knockouts and gene-specific variants into the assembly or maintenance of mitochondrial dynamics and can hopefully lead to a better understanding of mitochondrial related diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。