Single-cell RNA sequencing reveals distinct senotypes and a quiescence-senescence continuum at the transcriptome level following chemotherapy.

单细胞 RNA 测序揭示了化疗后转录组水平上不同的衰老类型和静止-衰老连续体

阅读:6
作者:Fernandez Brianna, Passanisi Victor, Ashraf Humza M, Spencer Sabrina L
Quiescence (reversible cell-cycle arrest) and senescence (irreversible arrest) are challenging to distinguish due to a lack of specific biomarkers, yet both arise simultaneously after chemotherapy. While senescence suppresses tumors by limiting proliferation and recruiting the immune system, quiescent cancer cells evade future therapies and may resume proliferation. Here, we pair time-lapse imaging of cell-cycle dynamics with single-cell RNA-sequencing after etoposide treatment to differentiate these states, linking heterogeneous cell-cycle phenotypes to the transcriptomic landscape. We identify diverse senescent types (senotypes) and link them to two arrest pathways - a gradual path arising after a standard mitosis-to-G0 transition, and a rarer but direct path driven by a mitotic slip. Using pseudotime trajectory analysis, we find that senescent phenotypes begin to manifest early and gradually along the first trajectory, even in shallow quiescent cells. These data support a model wherein, following chemotherapy, quiescence and senescence exist on a continuum of cell-cycle withdrawal at a transcriptome-wide level.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。