Microvilli control the morphogenesis of the tectorial membrane extracellular matrix.

微绒毛控制着盖膜细胞外基质的形态发生

阅读:10
作者:Niazi Ava, Kim Ju Ang, Kim Dong-Kyu, Lu Di, Sterin Igal, Park Joosang, Park Sungjin
The apical extracellular matrix (aECM), organized by polarized epithelial cells, exhibits complex structures. The tectorial membrane (TM), an aECM in the cochlea mediating auditory transduction, exhibits highly ordered domain-specific architecture. α-Tectorin (TECTA), a glycosylphosphatidylinositol (GPI)-anchored ECM protein, is essential for TM organization. Here, we identified that α-tectorin is released by distinct modes: proteolytic shedding by TMPRSS2 and GPI-anchor-dependent release from the microvillus tip in mice. In the medial/limbal domain, proteolytically shed α-tectorin forms dense fibers. In contrast, in the lateral/body domain, where supporting cells exhibit dense microvilli, shedding restricts α-tectorin to the microvillus tip, compartmentalizing collagen-binding sites. Tip-localized α-tectorin is released in a GPI-anchor-dependent manner to form collagen-crosslinking fibers, maintaining the spacing and parallel organization of collagen fibrils. Overall, these distinct release modes of α-tectorin determine domain-specific organization, with the microvillus coordinating release modes along its membrane to assemble the higher-order ECM architecture.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。