Splenic leukocytes, particularly macrophage-expressed lipoxygenases, facilitate the biosynthesis of resolution mediators essential for cardiac repair. Next, we asked whether deletion of 12/15 lipoxygenase (12/15LOX) in macrophages impedes the resolution of inflammation following myocardial infarction (MI). Using 12/15flox/flox and LysMcre scheme, we generated macrophage-specific 12/15LOX (Mɸ-12/15LOX-/-) mice. Young C57BL/6J wild-type and Mɸ-12/15LOX-/- male mice were subjected to permanent coronary ligation microsurgery. Mice were monitored at day 1 (d1) to d5 (as acute heart failure [AHF]) and to d56 (chronic HF) post-MI, maintaining no MI as d0 naïve control animals. Post ligation, Mɸ-12/15LOX-/- mice showed increased survival (88% vs 56%) and limited heart dysfunction compared with wild-type. In AHF, Mɸ-12/15LOX-/- mice have increased biosynthesis of epoxyeicosatrienoic acid by 30%, with the decrease in D-series resolvins, protectin, and maresin by 70% in the infarcted heart. Overall, myeloid cell profiling from the heart and spleen indicated that Mɸ-12/15LOX-/- mice showed higher immune cells with reparative Ly6Clow macrophages during AHF. In addition, the detailed immune profiling revealed reparative macrophage phenotype (Ly6Clow) in Mɸ-12/15LOX-/- mice in a splenocardiac manner post-MI. Mɸ-12/15LOX-/- mice showed an increase in myeloid population that coordinated increase of T regulatory cells (CD4+/Foxp3+) in the spleen and injured heart at chronic HF compared with wild-type. Thus, macrophage-specific deletion of 12/15LOX directs reparative macrophage phenotype to facilitate cardiac repair. The presented study outlines the complex role of 12/15LOX in macrophage plasticity and T regulatory cell signaling that indicates that resolution mediators are viable targets to facilitate cardiac repair in HF post-MI.
Macrophage-specific lipoxygenase deletion amplify cardiac repair activating Treg cells in chronic heart failure.
巨噬细胞特异性脂氧合酶缺失可增强心脏修复,激活慢性心力衰竭中的 Treg 细胞
阅读:8
作者:Kain Vasundhara, Grilo Gabriel Araujo, Upadhyay Gunjan, Nadler Jerry L, Serhan Charles N, Halade Ganesh V
| 期刊: | Journal of Leukocyte Biology | 影响因子: | 3.100 |
| 时间: | 2024 | 起止号: | 2024 Oct 1; 116(4):864-875 |
| doi: | 10.1093/jleuko/qiae113 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
