Bax- Bcl-xL interaction dynamics during the progression of cell cycle and cell death using FLIM-FRET.

利用 FLIM-FRET 研究细胞周期进程和细胞死亡过程中 Bax-Bcl-xL 相互作用的动态变化

阅读:11
作者:Halikar Aman M, Chandrasekharan Aneesh, Lekshmi Asha, Sivasailam Aswathy, Tiffee P J Jain, Tiwari Shivanshu K, Rather Aijaz Ahmad, Santhoshkumar T R
Genetically identical cells in a population show cell-to-cell variability because of fluctuation in transcription, epigenetics, post-translational modifications, and stochastic or extrinsically triggered non-genetic alterations. The change in the interaction state of proteins also emerges as an additional layer of cell signaling that influences cell cycle and cell death. However, the interrelation between cell cycle progression and cell death under the influence of spatio-temporal changes in protein-protein interaction is difficult to demonstrate in growing cells. This requires tools for cell cycle phase-resolved visualization of macromolecular interactions in live cells. We describe an approach to visualize the interaction of pro- and anti-death signaling partners, Bax and Bcl-xL, during cell cycle progression and cell death in live cells. Cells were stably expressed with Bax and Bcl-xL with FRET pairs and real-time cell cycle indicator probes. Acceptor photobleaching and Fluorescence lifetime imaging revealed interaction dynamics between Bax and Bcl-xL in isogenic stable cells. While Bcl-xL inhibited cell cycle progression, Bax promoted the cell cycle. The study highlighted an increased Bax-Bcl-xL interaction in the G1 phase compared to the non-G1 phase. Increased interaction is seen under stressed conditions and Bax-activated cells with FLIM-FRET, highlighting the nature of Bax-Bcl-xL interaction during cellular stress. In conclusion, our study explains Bax-Bcl-xL interaction dynamics in real-time and the potential utility of the approach to study macromolecular interactions along with cell cycle and cell death.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。