The Halbach array, originally developed for particle accelerators, is a compact arrangement of permanent magnets that creates well-defined magnetic fields without heating. Here, we demonstrate its use for modulating the speed of electromechanical waves in cardiac syncytia of human stem cell-derived cardiomyocytes. At 40-50 mT magnetic field strength, a cylindrical dipolar Halbach array boosted the conduction velocity (CV) by up to 25% when the magnetic field was co-aligned with the electromechanical wave (but not when perpendicular to it). To observe the effects, a short-term incubation of the cardiac cell constructs with non-targeted magnetic nanoparticles (mNPs) was sufficient. This led to increased CV anisotropy, and effects were most pronounced at slower pacing rates. Instantaneous formation and rearrangement of elongated mNP clusters upon magnetic-field rotation was seen, creating dynamic structural anisotropy that may have contributed to the directional CV effects. This approach may be useful for anti-arrhythmic control of cardiac waves.
Control of cardiac waves in human iPSC-CM syncytia by a Halbach array and magnetic nanoparticles.
阅读:3
作者:Pozo Maria R, Heinson Yuli W, Chua Christianne J, Entcheva Emilia
期刊: | Biophysical Journal | 影响因子: | 3.100 |
时间: | 2025 | 起止号: | 2025 Apr 15; 124(8):1273-1284 |
doi: | 10.1016/j.bpj.2025.03.006 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。