Extracellular adherence proteins reduce matrix porosity and enhance Staphylococcus aureus biofilm survival during prosthetic joint infection.

细胞外粘附蛋白降低基质孔隙率,增强金黄色葡萄球菌生物膜在假体关节感染期间的存活率

阅读:8
作者:Bhattacharya Mohini, Scherr Tyler D, Lister Jessica, Kielian Tammy, Horswill Alexander R
Biofilms are a cause of chronic, non-healing infections. Staphylococcus aureus is a proficient biofilm-forming pathogen commonly isolated from prosthetic joint infections that develop following primary arthroplasty. Extracellular adherence protein (Eap), previously characterized in planktonic or non-biofilm populations as being an adhesin and immune evasion factor, was recently identified in the exoproteome of S. aureus biofilms. This work demonstrates that Eap and its two functionally orphaned homologs EapH1 and EapH2 contribute to biofilm structure and prevent macrophage invasion and phagocytosis in these communities. Biofilms unable to express Eap proteins demonstrated increased porosity and reduced biomass. We describe the role of Eap proteins in vivo using a mouse model of S. aureus prosthetic joint infection. The Results suggest that the protection conferred to biofilms by Eap proteins is a function of biofilm structural stability that interferes with the leukocyte response to biofilm-associated bacteria.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。