Micro-Scale Topography Triggers Dynamic 3D Nuclear Deformations.

微观地形引发动态三维核形变

阅读:8
作者:Leclech Claire, Cardillo Giulia, Roellinger Bettina, Zhang Xingjian, Frederick Joni, Mamchaoui Kamel, Coirault Catherine, Barakat Abdul I
Navigating complex extracellular environments requires extensive deformation of cells and their nuclei. Most in vitro systems used to study nuclear deformations impose whole-cell confinement that mimics the physical crowding experienced by cells during 3D migration through tissues. Such systems, however, do not reproduce the types of nuclear deformations expected to occur in cells that line tissues such as endothelial or epithelial cells whose physical confinement stems principally from the topography of their underlying basement membrane. Here, it is shown that endothelial cells and myoblasts cultured on microgroove substrates that mimic the anisotropic topography of the basement membrane exhibit large-scale 3D nuclear deformations, with partial to complete nuclear penetration into the microgrooves. These deformations do not lead to significant DNA damage and are dynamic with nuclei cyclically entering and exiting the microgrooves. Atomic force microscopy measurements show that these deformation cycles are accompanied by transient changes in perinuclear stiffness. Interestingly, nuclear penetration into the grooves is driven principally by cell-substrate adhesion stresses, with a limited need for cytoskeleton-associated forces. Finally, it is demonstrated that myoblasts from laminopathy patients exhibit abnormal nuclear deformations on microgrooves, raising the possibility of using microgroove substrates as a novel functional diagnostic platform for pathologies that involve abnormal nuclear mechanics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。