Micro-Scale Topography Triggers Dynamic 3D Nuclear Deformations.

微观地形引发动态三维核形变

阅读:4
作者:Leclech Claire, Cardillo Giulia, Roellinger Bettina, Zhang Xingjian, Frederick Joni, Mamchaoui Kamel, Coirault Catherine, Barakat Abdul I
Navigating complex extracellular environments requires extensive deformation of cells and their nuclei. Most in vitro systems used to study nuclear deformations impose whole-cell confinement that mimics the physical crowding experienced by cells during 3D migration through tissues. Such systems, however, do not reproduce the types of nuclear deformations expected to occur in cells that line tissues such as endothelial or epithelial cells whose physical confinement stems principally from the topography of their underlying basement membrane. Here, it is shown that endothelial cells and myoblasts cultured on microgroove substrates that mimic the anisotropic topography of the basement membrane exhibit large-scale 3D nuclear deformations, with partial to complete nuclear penetration into the microgrooves. These deformations do not lead to significant DNA damage and are dynamic with nuclei cyclically entering and exiting the microgrooves. Atomic force microscopy measurements show that these deformation cycles are accompanied by transient changes in perinuclear stiffness. Interestingly, nuclear penetration into the grooves is driven principally by cell-substrate adhesion stresses, with a limited need for cytoskeleton-associated forces. Finally, it is demonstrated that myoblasts from laminopathy patients exhibit abnormal nuclear deformations on microgrooves, raising the possibility of using microgroove substrates as a novel functional diagnostic platform for pathologies that involve abnormal nuclear mechanics.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。