Blood flow differs between arteries and veins, hence endothelial cells in these vessels are exposed to different magnitudes of shear stress. Deviation from physiological blood flow triggers vascular remodeling, with increased or decreased flow leading to outward or inward remodeling, to adjust lumen diameter and thereby re-establish physiological shear stress. Based on this, it is assumed that endothelial cells in different vessels differ in their sensitivity to different shear stress levels. Expression levels of VEGFR3 were previously demonstrated to determine the threshold or set point for endothelial cell type specific shear stress sensitivity. Here we show, that the receptor type tyrosine phosphatase VE-PTP and the tyrosine kinase receptor Tie-2 represent another, new signaling system, that determines sensitivity and cellular responsiveness to different shear stress magnitudes or flow set points. We found that increased shear stress levels cause increased levels of VE-PTP endocytosis, which trigger, a similarly graded increase of Tie-2 activity, stimulation of FOXO1 nuclear exclusion and activation of autophagy. The VE-PTP/Tie-2 signaling mechanism controls cell alignment and elongation dependent on the magnitude of shear stress. In addition, VE-PTP/Tie-2 controls shear stress-induced cellular morphological changes independent of VEGFR2. Thus, VE-PTP/Tie-2 is a novel signaling mechanism which determines shear stress sensitivity and morphological responses of endothelial cells.
VE-PTP controls a fluid shear stress set point that governs cell morphological responses through Tie-2.
VE-PTP 通过 Tie-2 控制流体剪切应力设定点,从而控制细胞形态反应
阅读:4
作者:Shirakura Keisuke, Ghanbarpour Houshangi Mana, Peters Kevin G, Vestweber Dietmar
| 期刊: | Frontiers in Cell and Developmental Biology | 影响因子: | 4.300 |
| 时间: | 2025 | 起止号: | 2025 Jul 4; 13:1603517 |
| doi: | 10.3389/fcell.2025.1603517 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
